首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3143篇
  免费   694篇
  国内免费   363篇
  2024年   7篇
  2023年   146篇
  2022年   82篇
  2021年   178篇
  2020年   262篇
  2019年   295篇
  2018年   218篇
  2017年   240篇
  2016年   231篇
  2015年   202篇
  2014年   280篇
  2013年   270篇
  2012年   200篇
  2011年   203篇
  2010年   134篇
  2009年   188篇
  2008年   157篇
  2007年   156篇
  2006年   109篇
  2005年   81篇
  2004年   81篇
  2003年   62篇
  2002年   56篇
  2001年   45篇
  2000年   37篇
  1999年   35篇
  1998年   27篇
  1997年   33篇
  1996年   24篇
  1995年   25篇
  1994年   23篇
  1993年   12篇
  1992年   15篇
  1991年   15篇
  1990年   11篇
  1989年   11篇
  1988年   7篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
排序方式: 共有4200条查询结果,搜索用时 31 毫秒
51.
52.
《Chirality》2017,29(11):670-676
The absolute configuration (AC) of an axially chiral sulfonate (aCSO), 3,5‐dimethyl‐2‐(naphthalen‐1‐yl)‐6‐(naphthalen‐1‐yl)benzenesulfonate (labeled as aCSO5), was investigated using optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD) spectroscopies. All three methods led to the same conclusion and the AC of aCSO5 is reliably determined to be (−)‐(aR , aR ), or conversely (+)‐(aS , aS ).  相似文献   
53.
54.
55.
56.
Aim Species distribution models (SDMs) or, more specifically, ecological niche models (ENMs) are a useful and rapidly proliferating tool in ecology and global change biology. ENMs attempt to capture associations between a species and its environment and are often used to draw biological inferences, to predict potential occurrences in unoccupied regions and to forecast future distributions under environmental change. The accuracy of ENMs, however, hinges critically on the quality of occurrence data. ENMs often use haphazardly collected data rather than data collected across the full spectrum of existing environmental conditions. Moreover, it remains unclear how processes affecting ENM predictions operate at different spatial scales. The scale (i.e. grain size) of analysis may be dictated more by the sampling regime than by biologically meaningful processes. The aim of our study is to jointly quantify how issues relating to region and scale affect ENM predictions using an economically important and ecologically damaging invasive species, the Argentine ant (Linepithema humile). Location California, USA. Methods We analysed the relationship between sampling sufficiency, regional differences in environmental parameter space and cell size of analysis and resampling environmental layers using two independently collected sets of presence/absence data. Differences in variable importance were determined using model averaging and logistic regression. Model accuracy was measured with area under the curve (AUC) and Cohen's kappa. Results We first demonstrate that insufficient sampling of environmental parameter space can cause large errors in predicted distributions and biological interpretation. Models performed best when they were parametrized with data that sufficiently sampled environmental parameter space. Second, we show that altering the spatial grain of analysis changes the relative importance of different environmental variables. These changes apparently result from how environmental constraints and the sampling distributions of environmental variables change with spatial grain. Conclusions These findings have clear relevance for biological inference. Taken together, our results illustrate potentially general limitations for ENMs, especially when such models are used to predict species occurrences in novel environments. We offer basic methodological and conceptual guidelines for appropriate sampling and scale matching.  相似文献   
57.
58.
Sexual selection is thought to counteract natural selection on the grounds that secondary sexual traits are inherently costly and evolve at the expense of naturally selected traits. It is therefore commonly predicted that increased sexual selection is associated with decreased physiological tolerance or ecological plasticity. Using phylogenetic comparative methods, we test this prediction by exploring relationships between traits assumed to be sexually selected (plumage dichromatism and song structure) and traits assumed to be naturally selected (altitudinal range and habitat range) in a diverse family of tropical birds. Contrary to expectations, we find that taxa with higher levels of dichromatism, and lower song pitch, occupy a wider variety of habitats and elevations. In other words, indices of sexual selection are positively related to two standard measures of ecological generalism. One interpretation of this pattern is that sexual selection combines synergistically with natural selection, thereby increasing physiological tolerance or the propensity to adapt to novel environments. An alternative possibility is that ecological generalism increases population density, which in turn promotes sexual selection in the form of greater competition for mates. Overall, our results suggest that a synergism between natural selection and sexual selection may be widespread, but the processes underlying this pattern remain to be investigated.  相似文献   
59.
Aim Do species range shapes follow general patterns? If so, what mechanisms underlie those patterns? We show for 11,582 species from a variety of taxa across the world that most species have similar latitudinal and longitudinal ranges. We then seek to disentangle the roles of climate, extrinsic dispersal limitation (e.g. barriers) and intrinsic dispersal limitation (reflecting a species’ ability to disperse) as constraints of species range shape. We also assess the relationship between range size and shape. Location Global. Methods Range shape patterns were measured as the slope of the regression of latitudinal species ranges against longitudinal ranges for each taxon and continent, and as the coefficient of determination measuring the degree of scattering of species ranges from the 1:1 line (i.e. latitudinal range = longitudinal range). Two major competing hypotheses explaining species distributions (i.e. dispersal or climatic determinism) were explored. To this end, we compared the observed slopes and coefficients of determination with those predicted by a climatic null model that estimates the potential range shapes in the absence of dispersal limitation. The predictions compared were that species distribution shapes are determined purely by (1) intrinsic dispersal limitation, (2) extrinsic dispersal limitations such as topographic barriers, and (3) climate. Results  Using this methodology, we show for a wide variety of taxa across the globe that species generally have very similar latitudinal and longitudinal ranges. However, neither neutral models assuming random but spatially constrained dispersal, nor models assuming climatic control of species distributions describe range shapes adequately. The empirical relationship between the latitudinal and longitudinal ranges of species falls between the predictions of these competing models. Main conclusions We propose that this pattern arises from the combined effect of macroclimate and intrinsic dispersal limitation, the latter being the major determinant among restricted‐range species. Hence, accurately projecting the impact of climate change onto species ranges will require a solid understanding of how climate and dispersal jointly control species ranges.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号